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In this paper approximations of the dispersion relation associated with
harmonic waves propagating along the axis of transverse isotropy, parallel to the
traction free surfaces, in a "bre-reinforced elastic plate are derived. High and low
wave number expansions are derived which have potential applications to impact
problems within plates and shells and acoustic scattering and radiation
respectively. Plots of the associated group velocity curves are presented and a wave
front travelling with a speed of the same order of magnitude as the Young's
modulus along the "bre direction is observed. A particularly interesting feature of
this front is that its formation arises through the cumulative e!ect of various
harmonics in adjacent wave number regimes. The paper concludes with both
a conjecture concerning the properties of this wave as the Young's modulus
increases and the derivation of approximate solutions for the dispersion relation in
the neighbourhood of the associated wave front. ( 1999 Academic Press
1. INTRODUCTION

The use of "bre-reinforced composites is prevalent in modern structures. Such
materials have found extensive use in the aerospace industry where their high
strength-to-weight ratio is an integral part of aircraft design. Such composites are
usually formed by reinforcing an elastic matrix with a series of strong parallel "bres.
A typical composite consists of about a 60% volume fraction of carbon "bres
embedded in a thermoplastic resin, with the "bre diameter and inter-"bre spacing
of the order of 6 lm. In this paper such a material shall be treated as
a homogeneous continuum. By treating the composite as such it is then tacitly
assumed that the "bres are an inherent material property, rather than some form of
inclusion. The speci"c problem studied in this paper is that of harmonic wave
propagation along the direction of transverse isotropy, termed the "bre direction,
0022-460X/99/320283#23 $30.00/0 ( 1999 Academic Press
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in a transversely isotropic elastic plate. In view of the aforementioned assumptions
wave motion is then regarded, as with many earlier authors, e.g. [1, 2], as
a phenomenon governed by the macroscopic properties of the material.

Theoretical and experimental investigation of wave propagation and vibration in
"bre-reinforced structures is an area which has received a huge amount of interest
in recent years owing to many industrial applications of such structures. A detailed
list of references may be found in the review articles [3, 4]. Although most of the
work in this area has been carried out within the framework of transversely
isotropic elasticity, some related work has also been carried out for a more general
orthotropic case [5}7]. In all this extensive literature it would seem that little
consideration has been given to asymptotically approximating the dispersion
relation and seeking to utilize such approximations in elucidation of wave and
vibration phenomena. The primary purpose of this paper is to derive high and low
wave number representations of the dispersion relation for a transversely isotropic
elastic plate. It is expected that such approximations will help in the numerical
inversion of the transform solutions often used to determine transient impact
response [8]. Such methods, which involve the full three-dimensional equations of
elasticity, are extremely important in the case of high-velocity impact response of
"bre-reinforced composites, owing to the high stress gradients which may make
various approximate theories inaccurate. Speci"cally, with this method exact
transform solutions are obtained and numerical techniques are utilized only in the
inversion of the integral transforms to recover dependence on space and time, this
necessitating integration over an in"nite wave number region and summation over
all branches of the dispersion relation. For line impact problems it has previously
been found that the denominator of the solution integrand is the associated
dispersion relation [9]. In view of the fact that in practice the integral must be both
restricted to a "nite wave number range, and the summation of such integrals
restricted to a "nite number of branches, it is envisaged that the expansions derived
in this paper will aid such inversion procedures.

In addition to the use of "bre-reinforced composites in the aerospace industry
many cylindrical structures, such as pipes, are reinforced by "bres, often helically
wound. Moreover in a recent paper [10] it has been shown that the asymptotic
behaviour of the dispersion relation associated with an isotropic elastic thin
cylinder is intimately related to that of an in"nite elastic plate. So, in addition to
applications to problems involving layered "bre-reinforced structures, it is
envisaged that the present study, in which high wave number approximations of the
dispersion relation for a "bre-reinforced plate are derived, will also provide results
relevant to problems involving "bre-reinforced cylinders and cylindrical shells.

In section 2 the governing equations are derived and the dispersion relation is
obtained. This relation is then decomposed into #exural and extensional
components. In section 3 high wave number expansions for each harmonic of the
dispersion relations associated with both #exural and extensional waves are
derived. In section 4 similar expansions are derived appropriate for the low wave
number region. Numerical results are presented in section 5 in which the high wave
number approximations are shown to provide excellent agreement over
a remarkably wide wave number range. It is also noted that the similar limit of the
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fundamental modes yields the associated surface wave speed equation. It is further
observed that a wave front is formed from the cumulative e!ect of the harmonics in
adjacent wave number regions, this manifesting itself through the #attening of the
dispersion curve branches at the appropriate wave speed. Group velocity curves are
presented which con"rm this and show a series of associated #at local maxima.
Similar plots in respect of surface waves have been previously reported in reference
[11] and a corresponding wave front observed in the numerical solution in
reference [9]. In Section 6 the e!ect of increasing the Young's modulus in the "bre
direction is discussed. It is shown that the wave front formed by the cumulative
e!ect of the harmonics in adjacent wave number regions now has high speed.
Moreover, the associated maxima on the group velocity curves occur for the "rst
few harmonics are closely packed in the low wave number region. It is conjectured
that as the associated wave has small amplitude and this amplitude tends to zero as
the inextensible limit is reached. This section is concluded with the derivation of
some approximate solutions for the dispersion relations in the neighbourhood of
this wave front. Finally, in section 7 a discussion concerning the potential
application of the approximate solutions is presented.

2. GOVERNING EQUATIONS FOR AN INFINITE PLATE

The concern in this paper is an in"nite plate of width 2h composed of
transversely isotropic elastic material. Attention will be restricted to the case of the
direction of transverse isotropy laying in the plane of the plate, this being both
mathematically expedient and common in engineering applications. A Cartesian
co-ordinate system of axes Ox

1
x
2
x
3

is chosen with origin O in the mid-plane, Ox
3

normal of the plate and Ox
1

coincident with the direction of transverse isotropy.
The equations of motion are assumed in their usual form:

p
ij,j

"ou(
i
, (2.1)

in which o is the material density, p
ij
(x, t) the components of the Cauchy stresss

tensor, and u
i
(x, t) the components of displacement for a particle at position x at

time t. Throughout this paper the summation convention on repeated su$ces is
understood, a superimposed dot indicates di!erentiation with respect to time and
a comma di!erentiation with respect of the implied component of x. Equations (2.1)
are to be solved subject to traction-free boundary conditions on the upper and
lower faces of the plate, namely
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The stress}strain relationshsip for a transversely isotropic elastic material is well-
known and may be expressed in the component form
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(see example reference [12]). In equation (2.3) a is a unit vector de"ning the axis of
transverese isotropy and a,b, j,k

T
and k

L
are material constants. These material
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constants may be related to the components of the symmetric sti!ness matrix c
pq

,
commonly employed in crystal acoustics, through the expressions
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(see reference [13]). When the direction of transverse isotropy, referred to as the
,bre direction, is along Ox

1
the components of stress are given explicitly through

the relations
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in which the in"nitesimal strain tensor is de"ned in terms of the components of
displacement through the relations
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i, j
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) (2.8)

It is noted in passing that the limit of a material which is inextensible in the
direction of transverse isotropy is examined by allowing bPR, e

11
P0, in such

a way that be
11

P¹, an arbitrary tension along a. The typical situation addressed
in this paper is strongly anisotropic media for which b is very much larger in
magnitude than j, k

L
, k

T
and a.

Utilization of equations (2.4)}(2.8) in the equations of motion (2.1) yields
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within which c2
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The traction-free boundary conditions (2.2) are now expressible in the form
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Solutions of the equations of motion are now sought in the form of the travelling
waves

u"(;, <,=)ekqx3e*k(x1~vt). (2.14)

Utilizing equation (2.14) in equations (2.9)}(2.11) the three components of the
equations of motion are expressible in the form
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The correspondidng traction-free boundary conditions, to be satis"ed at the upper
and lower surfaces of the plate, are similarly obtainable and take the form

q;#i="0, q<"0, i(j#a);#q (j#2k
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"$h. (2.18)

It is observed from the equations of motion that the equation for < uncouples
from those involving ; and =. Moreover, the boundary condition (2.13)
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corresponding to anti-symmetric and symmetric modes respectively. The
dispersion relations (2.19) are those associated with horizontally polarized shear
waves, usually referred to as SH waves. It is also noted that (2.13)

2
is also satis"ed

when q"0. This represents a non-dispersive shear wave travelling with a constant
speed v"c

3
which will leave any plane x

3
"constant traction free. Such waves are

usually termed exceptional and are important in the theory of surface waves and
body wave re#ections at boundaries [14].

The two other equations of motion (2.9) and (2.11) will have a non-trivial solution
provided
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If the two solutions of equation (2.20) are denoted by q2
1

and q2
2

it is readily deduced
for future reference that
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and solutions for ; and = are obtainable as linear combinations of the four
solutions of equation (2.20) in the form
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in which
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The dispersion relation is derived by assuming that the plate is traction free at the
two surfaces x

3
"$h. Accordingly, equations (2.15) and (2.17) may be used in

conjunction with (2.18)
1,3

to obtain the following system of homogeneous
equations:
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in which
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If equations (2.26) and (2.27) are added and equations (2.28) and (2.29) subtracted
we obtain a system of two equations in (=(1)#=(2)), whilst if equations (2.26) and
(2.27) are subtracted and equations (2.28) and (2.29) added a system of two
equations in (=(1)!=(2)) is obtained. System (2.26)}(2.29) may then be
decomposed into the two systems
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or
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It is readily deduced from equations (2.31) and (2.32) that a non-trivial solution will
exist provided
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with a similar non-trivial solution of equations (2.33) and (2.34) existing provided
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It is noted that the u
3

associated with equations (2.35) and (2.36) are odd and even
about the mid-plane, respectively. It follows that (2.35) is the dispersion relation
associated with extensional waves, whilst equation (2.36) is concerned with #exural
(or bending) waves. The dispersion relation (2.35) was seemingly "rst derived in
reference [1], which contains a detailed analysis of the inextensible limit but
numerical results in respect of only the "rst few harmonics and little asymptotic
analysis.

3. HIGH WAVE NUMBER ASYMPTOTIC INVESTIGATION

3.1. THE HARMONICS

Numerical results indicate that for high wave number and strong anisotropy all
harmonics of equations (2.35) and (2.36) have one of q

1
, q

2
purely imaginary with

a modulus which tends to zero as khPR, the other remaining real and "nite.
Accordingly as khPR
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from which we are able to deduce that q
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a requirement certainly met for highly anisotropic material, for which we recall that
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It is of interest to brie#y digress and discuss the case in which the material is not
strongly anisotropic and (3.2) is violated, c

5
then being the same order of magnitude

as all other material parameters. At "rst sight it may appear from equation (2.20)
that the requirement qL &0 as khPR implies that it is possible that v"c

5
is

a possible high wave number limiting wave speed of the harmonics. It can easily be
shown however that this is not a possible limit as q

2
cannot have a real limiting

value. The asymptotic behaviour in such cases is more complicated and will be
explicated elsewhere.

The high wave number representation of the dispersion relation (2.35) is therefore
given by
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From equation (3.3) it is deduced that as khPR and qL
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Utilizing equation (2.20) and assuming that qL
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is small yields
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Motivated by the form of qL
1

shown in equation (3.4) we seek to improve the
approximation obtainable for the phase speed associated with each harmonic in the
high wave number regime by setting

kqL
1
h"An#

1
2Bn#

/
kh

#O(kh)2Ntan(kqL
1
h)"!

kh
/
#O(1) (3.6)

in which / is an O(1) quantity to be determined. It is possible to obtain an
expression for / by inserting equation (3.6) into equation (3.3) and then equating
leading order terms, to yield
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in which qL
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is the appropriate leading order approximation for q
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, given by
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It is now possible to establish that
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We now turn our attention to the #exural wave dispersion relation (2.36) which
may be recast in the appropriate high wave number representation
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from which it is deduced that as khPR, tan(kqL
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If equation (3.11) is now inserted into equation (3.10) and leading order terms in
kh equated we obtain
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Utilization of equations (3.11) and (3.12) with equation (2.20) reveals that the high
wave number representation of the phase speed of all harmonics associated with
#exural motion is given by
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in which

gL "
g
nn

.

3.2. THE FUNDAMENTAL MODE

For the fundamental mode of either equation (2.35) or equation (2.36) both
q
1
and q

2
are real or form a complex conjugate pair. The high wave number limit of

either of these two dispersion relations is therefore obtainable by replacing the
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hyperbolic tangents by unity, to yield in either case
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Equation (3.14) is the Rayleigh surface wave speed equation. From this equation
the speed of propagation of the surface wave propagating in a half-space composed
to transversely isotropic elastic material may be obtained. This equation has
previously been obtained and the existence of such waves discussed in detail [2].

4. LOW WAVE NUMBER ASYMPTOTIC INVESTIGATION

4.1. THE HARMONICS

Numerical investigation reveals that in the low wave number limit ov2PR as
khP0 for all harmonics. Accordingly, equation (2.20) may be used to establish that
in the low wave number (long wave) region
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within which
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For future use it is noted that q
1

and q
2

may be expressed in the form q
1
"iqL

1
and

q
2
"iqL

2
, where

qL
1
"

v
c
1
A1!

qN 2
1
c2
1

2v2 B#O(v~2), qL
2
"

v
c
3
A1!

qN 2
2
c2
3

2v2 B#O(v~2). (4.3)

Utilizing equations (4.1) in equation (2.35) it is readily established that for
extensional harmonics in the long wave regime
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implying that
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2
h)&O(v~2). (4.5)

The "rst case, equation (4.5)
1

implies that tan(kqL
1
h)A1 and therefore we assume

that
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in which c
1

is an O(1) quantity to be determined. Equation (4.6) may now be
inserted into equation (4.4) to establish that
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thus enabling c
1

to be found by equating leading order terms in equation (4.4),
yielding
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This expression for c
1

may now be "rst inserted into equation (4.6) and then into
equation (4.3)

1
to obtain the appropriate phase-speed expansion
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The second possible case indicated in equation (4.5) may be used to infer that

qL
2
"

nn
kh

#c
2
(kh)#O(kh)2Ntan(kqL

2
h)"c

2
(kh)2O(kh)4, qL

1
"

c
3
nn

khc
1

#O(kh).

(4.9)

Equation (4.9) may now be used in conjunction with equation (4.4) to establish that
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which may be used with equation (4.3)
2

to obtain the phase-speed expansion
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In the case of #exural waves the analogous form of equation (4.5) is
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implying that
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Equation (4.13)
1

is now employed to establish that
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Equations (4.14) and (4.15) may now be inserted into (4.12), and leading orders of kh
equated, to obtain
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This expression for c
3

may now be used in equations (4.14)
1

and (4.3)
2

to obtain the
low wave number expansion
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We now consider the second case, equation (4.13)
2
, for which
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Equations (4.18) and (4.19) may now be inserted into equation (4.12) and like
powers of kh equated to show that
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which by using equation (4.3)
1

enables us to obtain
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The expansions just derived are the so-called long-wave high-frequency
approximations. Moreover, K

1
, K

2
, K

3
and K

4
are the appropriate cut-o!

frequencies associated with symmetric and anti-symmetric stretch and shear
resonance. These long wave high-frequency approximations have direct relevance
to acoustic scattering and radiation [15].

4.2. THE FUNDAMENTAL MODE

Finally, in this section we consider the long-wave (khP0) limiting phase speed of
the fundamental mode which may be obtained from equations (2.35) and (2.36) by
replacing the hyperbolic tangents by their arguments. The limiting speeds of
extensional and #exural fundamental modes, denoted by vf(0) and ve(0),
respectively, are then found to be given by

vf(0)"0, ve(0)"S
c2
1
c2
5
!c4

4
c2
1

. (4.22)
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5. NUMERICAL RESULTS

In this section some numerical results are presented and discussed. In all the
"gures presented in this section data is employed which has been measured for
a carbon "bre-epoxy resin composite, see reference [16]. The values of c

1
, c

2
, c

3
,

c
4

and c
5

are thus given by

oc2
1
"10)57]109 Nm~2, oc2

2
"2)46]109 Nm~2, oc2

3
"5)66]109 Nm~2,

oc2
4
"4)37]109 Nm~2, oc2

5
"241)71]109 Nm~2. (5.1)

In Figures 1 and 2 numerical solutions of the dispersion relation (2.35),
fundamental mode and "rst 50 harmonics for extensional waves are presented.
Speci"cally, Figure 1 shows scaled phase speed against scaled wave number, with
Figure 2 showing the corresponding plot of frequency against kh. A signi"cant
feature observed in Figure 1 is the distinct #attening of the harmonics around the
value v"c

5
+15)55. A corresponding striking feature of Figure 2 in the ghost line

brought about by the oscillation of the harmonic branches. This ghost line has
a gradient u/kh"c

5
. As the dispersion curves approach the ghost line from the left

they exhibit the well-known plateau and step phenomenon. Along the plateau the
curves are almost parallel to the ghost line with phase speed almost constant. After
crossing the ghost line all branches are virtually parallel, with gradient u/kh"c

3
,

the high wave number limit of all harmonics. This #attering of the harmonics in
Figure 1, or ghost line associated with Figure 2, will give rise to a longitudinal wave
front travelling with a speed of v"c

5
, made up of the cumulative e!ect of all the

harmonics and the contribution from each harmonic occurrs in adjacent wave
number regimes. It is then expected that there are two body wave fronts. The "rst
associated with the high wave number limit of all harmonics, termed the "rst wave
Figure 1. Numerical solutions of the dispersion relation showing v against kh, extensional waves.



Figure 2. Numerical solutions of the dispersion relation showing u against kh, extensional waves.
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front and travelling with a speed given by ov2"c
3

and this second wave front with
a speed of ov2"c

5
.

The high wave number phase speed limit of the harmonics is only really evident
for the "rst few harmonics. Notwithstanding this it has been veri"ed numerically
that for all the harmonics in Figure 1 vPc

3
from above as khPR. Other features

which are consistent with earlier observations are (i) the wave speed associated with
the fundamental mode tends to a non-zero limit, see equation (4.22)

2
, (ii) for all

harmonics vPR as khP0 and (iii) the high wave number limit of fundamental
mode is the associated Rayliegh surface wave speed. It is also noted that as khP0
all branches of the frequency}wave number curves shown in Figure 2 exhibit
non-zero cut-o! frequencies, with the exception of the fundamental mode.

Although the nature of a pulse is determined by the phase velocity, it is well
known that for dispersive waves the parameter which governs the motion of a pulse
is the group velocity v

g
. This is de"ned as the gradient of the frequency curves, thus

v
g
"Lu/Lk. In Figure 3 a plot of the scaled group velocity v

g
against kh is presented,

showing the fundamental mode and "rst nine harmonics. Some of the most notable
features of this graph are the local maxima associated with each harmonic at
v
g
"c

5
. It is well-known that long time transient response usually decays like t~1@2;

however, at local turning points of the group velocity curves the decay is more
slowly, like t~1@3. Such maxima may then yield a signi"cant contribution to
transient response.

In Figures 4}6 the corresponding curves for #exural waves are presented. The
observations and conclusions from these graphs are similar to those already
discussed in the context of extensional waves. However, slight qualitative
di!erences do occur and it is "rst noted that the low wave number phase speed limit



Figure 3. Group velocity curves showing v
g
against kh, extensional waves.

Figure 4. Numerical solutions of the dispersion relation showing v against kh, #exural waves.
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of the fundamental mode is zero. A further point of interest is that the #attening of
the harmonics around v"c

5
is not as sharp for the "rst few harmonics as it is in the

case of extensional waves. The implication is that the "rst few maxima of the
associated group velocity curves shown in Figure 6 are slightly below v

g
"c

5
.

Finally, in this section, in Figures 7 and 8 comparison of numerical solution
with the asymptotic high wave number approximations (3.9) and (3.13) is made.



Figure 5. Numerical solutions of the dispersion relation showing u against kh, #exural waves.

Figure 6. Group velocity curves showing v
g
against kh, #exural waves.
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These two graphs show quite remarkable agreement between the asymptotic and
numerical solutions.

6. SOME COMMENTS ABOUT THE SECOND (LONGITUDINAL) WAVE FRONT

It has already been observed in the previous section that a wave front is formed
from the cumulative e!ect of the harmonics and travels with a speed v"c .
5



Figure 7. Comparison of numerical solutions with asymptotic expansions, showing phase speed
against kh for extensional waves. Numerical solutions * ; Asymptotic expansions - - - .

Figure 8. Comparison of numerical solutions with asymptotic expansions, showing phase speed
against kh for #exural waves. Numerical solutions * ; Asymptotic expansions - - - .
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Moreover, this speed is the same order as the Young's modulus and as the
inextensible limit in the "bre direction is reached the speed of the associated wave
will tend to in"nity. To elucidate this wave in the case of large Young's modulus the
dispersion relation for #exural waves is plotted in Figure 9 for the case c2

5
"5000)0.

In this Figure a wave front is clearly evident at v+71)0. The nature of the wave



Figure 9. Numerical solutions of the dispersion relation showing v against kh, extensional waves,
when c2

5
"5000)0.
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motion associated with this wave is interesting. It has already been remarked that
the associated wave speed will tend to in"nity as the material approaches the
inextensible limit. This is essentially an indication of increasing material rigidity.
Moreover, it has been shown for a simple boundary value problem that such a wave
will, in the inextensible limit, have in"nite speed, zero amplitude and in"nite
wavelength [17].

In Figure 10 a plot of the group velocity associated with the dispersion curves in
Figure 9 is presented. In this plot distinct maxima are shown and at "rst glance the
plots look very similar to those previously discussed in respect of Figures 3 and 6.
A signi"cant di!erence however is the wave number scale. In this case the scale is
small and it is conjectured that the "rst few harmonics, which are dominant in
determining transient response, have maximums over too small wave number to
make a signi"cant contribution to any wave front. It is therefore conjectured that
the amplitude of the wave front travelling with speed v

2
"c

5
will decrease as the

material becomes inextensible in the "bre direction. Numerical calculation are
currently being carried out to substantiate this conjecture, the results of which will
be reported in due course.

The behaviour of the dispersion relation in the vicinity of this wave front may be
investigated for large Young's modulus by introducing the small non-dimensional
parameter e, de"ned by

e"
c
c
5

@1, (6.1)

where c is a typical value of c
j
, j"1, 2, 3, 4. For the wave front an appropriate

timescale is O(c~1
5

) and in view of this, and the satisfaction of boundary conditions,



Figure 10. Group velocity curves showing v
g
against kh, extensional waves, when c2

5
"5000)0.
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the following non-dimensional variables are introduced:

x
1
"hm, x

3
"hef, t"

h
c
5

q. (6.2)

The two appropriate equations of motion, equations (2.9) and (2.11) are now
expressible in the form
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with the appropriate traction components given by
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From this longitudinal wave front it is expected that u
1
@u

3
and we therefore

introduce non-dimensional displacement and traction components u*
1
, u*

3
, p*

13
and

p*
33

, these being related to u
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, u
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and p

33
through

u
1
"hu*

1
, u

3
"ehu*

3
, p

13
"eoc2

5
, p

33
"e2oc2

5
p*
33

, (6.6)

in which
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and the non-dimensional constants D
k
are de"ned by c2D2

k
"c2

k
. In terms of u*

1
and

u*
3

the equations of motion (6.3) and (6.4) take the form
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The relative orders of the displacement and stress components in terms of the
original variables are given by

u
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&eu

1
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&ep

11
, p

33
&e2p

11
. (6.10)

The appropriate leading order solution for u
1

and u
3

are then given by
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!ig (q
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=(m)ekqmx3B e*k(x1~vt), u
3
"A

4
+

m/1

=(m)ekqmx3B e*k(x1~vt)

(6.11)

in which
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A glance at equation (6.10) indicates that this leading order solution must be subject
only to the boundary condition p

13
"0 at x

3
"$h, leading to the approximate

dispersion relations

v2"c2
5
#

(2n#1)2n2

4k2h2
c2
3
, v2"c2

5
#

n2n2

k2h2
c2
3

(6.13)

for #exural and extensional waves respectively.

7. CONCLUDING REMARKS

In this paper high and low wave number expansions of the dispersion relations
associated with #exural and extensional wave propagation in a "bre-reinforced
plate have been derived. Although many excellent algorithms have been developed
to solve dispersion relations numerically [18], the approximations derived in this
paper o!er a valuable and potentially highly useful alternative. In particular, it is
envisaged that they will prove particularly useful in determining the dynamic stress
response of a "bre-reinforced plate to impulsive events, especially in respect of
high-velocity impact and internal impulsive events, such as delamination and
cracking. For such problems the resulting transient response will involve a wide
range of frequencies (and wavelengths), with stress variation through thickness
changing rapidly. This is a situation quite distinct from that encountered in
low-frequency vibration, or low-velocity impact, problems for which various
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approximate techniques have proved extremely e!ective, o!ering methods capable
of producing accurate results, [19, 20].

A speci"c and important physical problem for which a detailed knowledge of the
stress variation is crucial is for prediction of material response arising from multiple
high-velocity impact. For such problems the directional focussing of waves arising
from an impact can cause weakening of the inter-ply bonds at locations away from
the immediate impact site, these weakened regions being signi"cantly more
susceptible to delamination as a result of further impact [21]. In respect of
high-velocity impacts, and internal impulsive events, methods based on the full
three-dimensional equations have been speci"cally developed. One commonly used
approach involves the use of integral transforms to obtain exact transform
solutions for displacement and stress at any location within a plate or laminate. The
dependence on space and time is then obtained by numerical inversion of these
transform solutions. For line load problems the denominator of the integrand is the
associated dispersion relation, each point on a branch therefore being a pole of the
integrand. The inversion necessitates summing the integral contribution from each
of its in"nite number of branches over the in"nite wave number range. Such
integrals are highly oscillatory, especially for large wave number, and their
convergence is often very slow.

The high wave number expansions derived in this paper o!er an alternative
representation of the dispersion relation which will not only save consider-
able computational time, but might well enable the numerical error as-
sociated with the aforementioned numerical inversions to be estimated. These
errors arise because the numerical quadrature is truncated at some "nite wave
number and the summation is restricted to a "nite number of harmonics. This is
a method which is extremely attractive in view of the remarkable agreement
between numerical, the numerical solution and approximations observed in
Figures 7 and 8. Estimation of the e!ects of neglecting harmonics in the
summation is of particular interest in respect of wave fronts arising from
the cumulative e!ect of the harmonics, such as the longitudinal front discussed
in this paper. For laminated media this is even more critical as surface and
interfacial wave fronts can also be formed in this way [9, 11, 22]. In passing it is
noted that in the third of these papers high wave number expansions for the
phase speed are derived for an incompressible 4-ply (initially isotropic) laminated
structure which is subject to an initial "nite homogeneous pre-stress. In the case of
multi-layered structures composed of layers of transversely isotropic elastic
material, extension of the techniques discussed in the present paper will therefore be
possible. Moreover, for general directions of in-plane propagation the cubic
equation in q2, analogous to equation (2.20), may be factorized [1], making
the derivation of such expansion possible for propagation along any in-plane
direction.

For numerical algorithms to determine dispersion relations, the e$ciency of
numerical schemes could be improved by using asymptotic approximation as an
initial guess. Indeed, with the recent development of mathematical manipulation
packages it is quite possible to develop a symbolic algorithm and call it directly
from a numerical code. There then exists the potential for development of hybrid



304 G. A. ROGERSON AND L. Y. KOSSOVITCH
asymptotic numerical routines using the methods developed in this paper as an
algebraic algorithm.

A "nal point worth noting is that recently there have been examples of dispersion
curves presented in the literature for which extensional and #exural harmonics
exhibit oscillatory behaviour in the high wave number regime and continually cross
over as the phase speed approaches the high wave number limit. This phenomena
even occurs for a plane strain approximation and therefore is quite distinct from the
well-known intersection with horizontally polarized shear waves [23, 24]. For
non-symmetric laminated structures the implication is that numerical problems
arise around these double roots. In such cases, the use of asymptotic methods to
approximate the dispersion relation and help explicate its qualitative features is
invaluable. In the context of the present paper, the oscillatory behaviour will occur
when inequality (3.2) is violated. Investigation of this, more general directions of
propagation and multi-layered media will form the basis of a future studies; the
results of which will be reported in due course.
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